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Coulomb Self-Energy of Axial Figures* 
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(Received 5 April 1963) 

A new method of computing the Coulomb self-energy of uniform axial figures is developed. The energy 
is expressed as a sum of slice-slice interactions plus the self-energy of each slice. Analytical formulas are de
rived for these energies and are presented in numerical tables. The method is tested numerically by com
paring its results with the exact self-energies of certain simple figures. 

TH E problem of the self-energy of an extended 
body due to the gravitational attraction or 

electrostatic repulsion of its matter is very old. Be
ginning with Newton, Clairaut, and Maclaurin the 
subject1 was^developed in connection with the figure 
of the earth |and the equilibrium shapes of rotating, 
gravitating liquid masses.2 In this study the Maclaurin 
spheroids and Jacobi ellipsoids were found to be the 
stable shapes for low angular momentum, and for these 
figures the self-energy was integrated. Indeed, to this 
day, uniform ellipsoids are the only solid figures for 
which an exact self-energy formula is known. In this 
early period the Legendre expansion for distorted-
sphere potentials was also developed. At the turn of 
this century Poincare, Darwin, Liapounov, and Jeans 
studied the "pear-shaped" figure which terminates the 
stability of the Jacobi shapes for high angular momen
tum. In this they used Lame expansions for the dis
torted-ellipsoid potential. 

In recent times the same problem has been studied 
extensively in connection with the liquid-drop model 
of nuclear fission.3 The same expansion techniques were 
used to find the Coulomb self-energies of Legendre-
distorted spheres and spheroids.3,4 

We are not concerned here with the successes or 
failures of liquid-drop calculations in explaining fission 
bu t only with the accuracy of those Coulomb self-
energy calculations which use expansion techniques; 
yet even this is difficult to assess. The formulas them
selves, which are power series in the distortion param
eters, show very slow apparent convergence even for 
rather small distortions. In addition, there are un
answered questions on the convergence of the method 
because of difficulties in determining the perturbed 

* Supported in part by the U. S. Atomic Energy Commission. 
1 1 . Todhunter, A History of Mathematical Theories of Attraction 

(MacMillan and Company Ltd., London, 1873; reprint, Dover 
Publications, Inc., New York, 1962). 

2 Reviews of this problem appear in: J. H. Jeans, Problems of 
Cosmogony and Stellar Dynamics (Cambridge University Press, 
New York, 1919); R. A. Lyttleton, The Stability of Rotating 
Liquid Masses (Cambridge University Press, New York, 1953); 
W. S. Jardetsky, Theories of Figures of Celestial Bodies (Inter-
science Publishers, Inc., New York, 1958). 

3 N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939). 
4 Many papers using Legendre distortions in Coulomb self-

energy calculations have been published since N. Bohr and J. A. 
Wheeler. The most complete is that of W. J. Swiatecki, in Pro
ceedings of the Second United Nations International Conference on 
the Peaceful Uses of Atomic Energy, Geneva, 1958 (United Nations, 
Geneva, 1958), Vol. 15, p. 651. 

potential. In the fission literature this is not seriously 
investigated5 although the distortions of interest are 
frequently large, whereas in the gravitational stability 
studies2 small distortions sufficed and terms beyond the 
second order in the expansion coefficients were not 
required. Even so, the history of the pear-shaped 
figures records several mistakes arising from conver
gence difficulties. I t should also be noted that the 
prediction of fission saddle points and trajectories 
requires very high accuracy in the self-energy calcu
lations because of the partial cancellation of the 
Coulomb and surface-tension distortion energies. 

These impressions, formed during attempts6 to study 
liquid-drop equilibrium shapes for nuclei with high 
angular momentum, led me to examine a different 
method of calculating Coulomb self-energies. This 
method, named the slice method, is applicable to any 
uniform solid body which is a figure of revolution and 
is slicable into circles. 

THE SLICE METHOD 

Consider a uniformly charged body which is a figure 
of revolution around the z axis. Suppose it to be cut by 
planes perpendicular to z into N circular slices each of 
thickness A. With no approximation, the self-energy is 
given by the sum of the self-energies of the A7 slices 
plus the sum of the interaction energies of each pair of 
slices. Now replace each slice by a flat, circular cylinder 
of height A and radius equal to some average radius of 
the slice. To some approximation its self-energy is equal 
to that of the slice. In the slice-slice interaction the 
same cylinders may be used or in a cruder approxi
mation each slice can be replaced^by a midplane disk 
onto which the total slice charge is uniformly spread. 
To some approximation the cylinder-cylinder (or 
disk-disk) interaction energy equals the true slice-slice 
interaction energy. 

In order to compute the cylinder self-energies and 
the interaction energies only one basic formula is 
needed; a formula which gives the interaction energy 
of two uniform disks. All other energies are integrals 
of this interaction. When this formula is obtained the 
accuracy of the slice method can be tested with spheres, 
spheroids, and sets of nonintersecting spheres. Of 

5 I t is, however, noted by Swiatecki (Ref. 4). 
6 R. Beringer and W. J. Knox, Phys. Rev. 121, 1195 (1961). 
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course, with very large N the method will be accurate, 
but since the number of interaction terms is ^AT(N— 1) 
the calculation will become very laborious. The practical 
question is whether the errors are small for moderate 
values of N. We guessed that the total error would be 
small because of compensating errors in the geometry 
of the method, and this is the fact. 

I t is clear that the slice method amounts to nothing 
more than a particular arrangement of the double 
summation which defines the self-energy. I t would not 
have appeared attractive or even reasonable before the 
era of high-speed computers. On the other hand, the 
method is completely general. Results are as easily 
obtained for one figure as for another and the accuracy 
should have little dependence on the shape of the figure. 

THE DISK-DISK INTERACTION 

The interaction energy of two coaxial and parallel 
disks of radii Ri and R2, uniform surface charge densities 
en and cr2, and spacing L is obtained by integrating the 
potential due to one disk over the charge on the other. 
Considering the larger disk, No. 1, as the source, the 
well-known potential convergent inside the hemisphere 
r^Rh 6»^ JTT is 

7(r,0) = 2 W 2 r 1 Pi(cos6> 
Ri 

+ E :,c"Q P2n(cO$d) 

where r is measured from the center of disk, C2n are the 
binomial coefficients of x2n in the expansion of (1+x2)172, 
and P2n(cosd) are the Legendre polynomials. The 
interaction energy of the two disks is 

/.tan-l(i22/L) 

£c(disk-disk) - / V(rfi)2ira2L
2 sin6> cos~W0, 

Jo 

which can be integrated term-by-term to give a power 
series in R2/L with coefficients which are themselves 
power series in L/R\. When this expression is rearranged 
as a series in ascending powers of R2/R1, the coefficients 
of these terms are recognized as products of binomial 
coefficients and hypergeometric series, 

f k oc g2n+2 

Ec (disk-disk) = 4***1*iRi*\ - -g2+ Z 
I 2 n=o2(n+l) 

XC2nP2n(0)F(n+l n-i, f, -k2) 

where k = L/Rh g=R2/Rh and F(a,b,c,—k2) are 
hypergeometric series.7 The series can be transformed 
to hypergeometric polynomials and the resulting 

expression written as, 

Ec (disk-disk) 
f * oc g 2 n + 2 ( 1 + £2)-2n+! 

=W<T1CT2RA - -g
2+ E 

I 2' «=o 2M-1) 

XC2nP2n(0)F(-n, -n+l, i -k2)\ 

This formula has several virtues: (a) By its arrange
ment in powers of g, the coefficients of the series are 
polynomials in k2 and thus exact, (b) The formula 
converges to the correct value not only within the 
hemisphere but for all R2<RX and, thus, a separate 
far-field solution is not needed, (c) The formula is 
convenient for high-speed computers. 

The convergence is very rapid for k>0 if g<l. Only 
in the region k^O, g^\ is the convergence slow. 
However, the value of Ec at & = 0, g= 1 is known from 
the analytic solution of the self-energy of a single 
disk8 which may be thought of as the self-energies of 
two coincident disks plus their interaction energy. 
This gives 

Ec (disk-disk) = (167r/3)a1cx2Ri8 

iork = 0,g=l. 
The disk-disk interaction energy has been calculated 

for various g and k by hand and with electronic com
puters. A short table of the interaction function 
E(k,g) = Ec/4:7r2(Ti(T2Ri* is given in Table I. 

THE FLAT-CYLINDER SELF-ENERGY 

For extremely flat cylinders the self-energy is that of 
a single disk, (ST/3)a2Rz, but for cylinders of finite 
height it is smaller. An accurate value can be calculated 
with the disk-disk interaction formula. This is con
veniently carried out by fitting an integrable function 
to E(k,l) and performing the double integration 

Ec(cyl) = 47rV^5 
MR 

E(ky\)dkdp, 

where p is the volume charge density, R the cylinder 
radius, and A its height. I t was found that a fit with 
a maximum residual of 0.01% in the range 0 ^ & ^ 0 . 5 
could be arranged with the semiempirical formula 

E(k,l) = i y H - £ £ 2 - ^ 2 l n & , 
3TT 

where £=0.257729, ,4 = 0.155241 were determined by 

7 E. T. Whittaker and G. N. Watson, Modern Analysis (Cam
bridge University Press, New York, 1958), Chap. XIV. 

8 A. S. Ramsey, Theory of Newtonian Attraction (Cambridge 
University Press, New York, 1940). 
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TABLE I. The (disk-disk) interaction function E(k,g). The larger disk is of radius R\ and the smaller of radius R2 

& = disk separation/i?i, g = R2/Ri. 

"A. 
0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
6.0 
7.0 
8.0 
9.0 
10.0 
15.0 
20.0 

0.1 

0.004994 
0.004519 
0.004093 
0.003715 
0.003380 
0.003086 
0.002827 
0.002600 
0.002400 
0.002224 
0.002069 
0.001931 
0.001809 
0.001699 
0.001601 
0.001513 
0.001433 
0.001361 
0.001295 
0.001235 
0.001180 
0.000963 
0.000811 
0.000700 
0.000615 
0.000549 
0.000495 
0.000414 
0.000355 
0.000311 
0.000277 
0.000249 
0.000166 
0.000125 

0.2 

0.019899 
0.018001 
0.016301 
0.014792 
0.013460 
0.012289 
0.011261 
0.010358 
0.009565 
0.008866 
0.008249 
0.007702 
0.007215 
0.006780 
0.006390 
0.006038 
0.005721 
0.005433 
0.005171 
0.004932 
0.004712 
0.003846 
0.003242 
0.002799 
0.002461 
0.002194 
0.001980 
0.001655 
0.001421 
0.001245 
0.001108 
0.000997 
0.000666 
0.000500 

0.3 

0.044488 
0.040220 
0.036410 
0.033033 
0.030060 
0.027449 
0.025160 
0.023153 
0.021389 
0.019835 
0.018462 
0.017245 
0.016161 
0.015192 
0.014322 
0.013539 
0.012831 
0.012188 
0.011603 
0.011068 
0.010578 
0.008640 
0.007286 
0.006292 
0.005532 
0.004935 
0.004452 
0.003722 
0.003197 
0.002801 
0.002492 
0.002244 
0.001498 
0.001124 

0.4 

0.078366 
0.070792 
0.064052 
0.058101 
0.052876 
0.048299 
0.044292 
0.040781 
0.037697 
0.034981 
0.032580 
0.030449 
0.028551 
0.026853 
0.025328 
0.023953 
0.022709 
0.021579 
0.020549 
0.019608 
0.018744 
0.015325 
0.012932 
0.011171 
0.009826 
0.008765 
0.007909 
0.006614 
0.005681 
0.004978 
0.004429 
0.003988 
0.002663 
0.001998 

0.5 

0.120961 
0.109153 
0.098699 
0.089514 
0.081480 
0.074464 
0.068333 
0.062966 
0.058254 
0.054102 
0.050429 
0.047166 
0.044257 
0.041652 
0.039310 
0.037196 
0.035281 
0.033540 
0.031952 
0.030499 
0.029165 
0.023875 
0.020162 
0.017427 
0.015333 
0.013682 
0.012348 
0.010328 
0.008872 
0.007775 
0.006918 
0.006231 
0.004161 
0.003122 

0.6 

0.171486 
0.154540 
0.139643 
0.126639 
0.115322 
0.105471 
0.096880 
0.089365 
0.082765 
0.076946 
0.071794 
0.067212 
0.063120 
0.059451 
0.056148 
0.053163 
0.050456 
0.047992 
0.045742 
0.043681 
0.041787 
0.034258 
0.028958 
0.025044 
0.022045 
0.019677 
0.017763 
0.014861 
0.012769 
0.011191 
0.009958 
0.008970 
0.005991 
0.004496 

0.7 

0.228893 
0.205942 
0.185971 
0.168686 
0.153730 
0.140755 
0.129457 
0.119575 
0.110891 
0.103226 
0.096428 
0.090373 
0.084956 
0.080092 
0.075705 
0.071734 
0.068128 
0.064841 
0.061835 
0.059078 
0.056542 
0.046435 
0.039293 
0.034007 
0.029950 
0.026743 
0.024148 
0.020210 
0.017369 
0.015225 
0.013549 
0.012205 
0.008153 
0.006119 

0.8 

0.291764 
0.262025 
0.236538 
0.214710 
0.195931 
0.179681 
0.165536 
0.153155 
0.142259 
0.132623 
0.124059 
0.116416 
0.109564 
0.103397 
0.097826 
0.092774 
0.088177 
0.083980 
0.080137 
0.076608 
0.073357 
0.060361 
0.051141 
0.044298 
0.039035 
0.034869 
0.031495 
0.026371 
0.022670 
0.019874 
0.017689 
0.015935 
0.010647 
0.007992 

0.9 

0.358092 
0.321016 
0.289965 
0.263649 
0.241090 
0.221574 
0.204564 
0.189643 
0.176478 
0.164804 
0.154403 
0.145094 
0.136728 
0.129181 
0.122347 
0.116137 
0.110475 
0.105298 
0.100549 
0.096180 
0.092151 
0.075988 
0.064470 
0.055895 
0.049285 
0.044046 
0.039798 
0.033338 
0.028667 
0.025137 
0.022376 
0.020160 
0.013473 
0.010113 

1.0 

0.424413 
0.380594 
0.344746 
0.314425 
0.288378 
0.265771 
0.245994 
0.228579 
0.213159 
0.199436 
0.187168 
0.176154 
0.166228 
0.157248 
0.149096 
0.141671 
0.134888 
0.128672 
0.122960 
0.117697 
0.112836 
0.093262 
0.079245 
0.068774 
0.060685 
0.054262 
0.049047 
0.041107 
0.035359 
0.031010 
0.027609 
0.024876 
0.016630 
0.012484 

least squares. The integration gives 

8X f 7T/ A' 

B-{—A-A In— 
12 R. 

The terms following unity are corrections to the disk 
value. This Ec(cy\) formula is believed to be accurate 
to 0.005% in the range 0 ^ A / i ^ 0 . 5 . 

CALCULATIONS WITH THE DISK-DISK 
INTERACTION 

In the simplest slice-method calculation the disk-disk 
interaction replaces the true interaction. As indicated 
earlier, the calculation consists in (a) slicing the figure 
into N slices of equal height A, (b) evaluating the 
self-energy of each slice by replacing it with a cylinder 
whose volume is that of the slice, (c) adding to this 
the interaction energy of each pair of midplane disks 
having charge density cr=pA and the radii of (b). In 
step (c) it is convenient to evaluate the interaction 
terms in order i starting at one end of the figure and 

to include an interaction with disk j if Ri>Rj. This 
automatically counts each interaction only once. 

I t should be mentioned that with the method as 
described no volume or charge renormalization is 
required. In some early calculations midplane radii 
were used for the disks and cylinders, but no simple and 
accurate volume renormalization of the final answer 
was possible. 

In our earliest calculations we used tabular values of 
E(k,g), but it was not possible to find simple formulas 
for the two-dimensional interpolation. In the calcu
lations reported here each interaction term was com
puted for the k and g values which occurred. A complete 
calculation of Ec for forty slices takes about thirty 
seconds on an IBM-7090 computer. 

Table I I lists results for the sphere and other figures 
for which exact analytical answers are known. I t is 
seen that the accuracy improves fairly rapidly with the 
number of slices [the errors vary quite accurately as 
1/N(N— 1)] but for a given number of slices the errors 
are higher for figures which are long in the axial direc
tion. Also, all of the computed answers are low. 

There are several inherent sources of error in the 

slice method and particularly in the approximation 

which uses disk-disk interactions. These errors were 
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studied for the figures of Table I I and for other figures, 
in particular, cylinders within the range of validity of 
our Ec(cyl) formula. I t was concluded that for A ^ 20 
the predominant source of error is. the disk-disk approxi
mation to the slice-interaction energy. Errors arising 
from the replacement of the slice by a cylinder are 
much smaller. To improve the calculation an inter
action-energy formula for flat cylinders was developed. 

THE CYLINDER-CYLINDER INTERACTION 

The interaction energy of two parallel and coaxial 
cylinders of radii Ri and R2, thickness A, uniform 
volume-charge density p, and midplane spacing mA 
= koRi can be found by a double integration of the 
disk-interaction function E(k,g) 

A/Ri rko+p 

Ec(cyl-cyl)-47r2p2^i5 7 / 
JO J h 

E(k,g)dkdp. 
ko-t-p—A/Ri 

The integration can be performed formally and results 
in a correction to Ec (disk-disk) which can be arranged 
as a power series in A/Ri — ko/nt. The same formula is 
obtained more easily by the double integration of 
E(k,g) written as a Taylor expansion around (ko,g). 
The resulting formula is 

E c (cyl-cyl) 

==4irV£1
8{E(fto,* 

1 /k0\
2/d2E\ 

2 X 3 X 2 ! W \d&)ko 

— ! - f t ' n +••• 
3 X 5 X 4 ! W \ d W t o 

TABLE III. Self-energy calculations with the (cyl-cyl) inter
action. The figures and procedures are the same as for Table II. 
The columns list calculated self-energies and errors with two 
different degrees of approximation to the true (cyl-cyl) interaction. 

Figure 

Sphere 

Two equal, 
touching 
spheres 

Prolate 
spheroid 
of 2 :1 
axis rat io 

Oblate 
spheroid 
of 2 :1 
axis rat io 

N 

10 
20 
30 
40 

20 
40 

10 
20 
30 
40 

10 
20 
30 
40 

Including d2E/dk2 t e rms 
Ec 

0.598501 
0.599602 
0.599819 
0.599897 

0.535289 
0.535411 

0.571838 
0.574028 
0.574446 
0.574593 

0.575751 
0.575807 
0.575825 
0.575832 

Error (%) 

- 0 . 2 5 0 
- 0 . 0 6 6 
- 0 . 0 3 0 
- 0 . 0 1 7 

- 0 . 0 3 3 2 
- 0 . 0 1 0 3 

- 0 . 5 1 3 
- 0 . 1 3 2 
- 0 . 0 5 9 
- 0 . 0 3 3 

- 0 . 0 1 6 3 
- 0 . 0 0 6 7 
- 0 . 0 0 3 5 
- 0 . 0 0 2 2 

Including d*E/dk2 and 
d*E/dk* t e rms 

Ec 

0.598512 
0.599606 
0.599821 
0.599897 

0.535294 
0.535414 

0.571800 
0.574040 
0.574448 
0.574597 

0.575756 
0.575807 
0.575825 
0.575832 

Error (%) 

- 0 . 2 4 8 
- 0 . 0 6 6 
- 0 . 0 3 0 
- 0 . 0 1 7 

- 0 . 0 3 2 3 
- 0 . 0 0 9 8 

- 0 . 5 1 9 
- 0 . 1 3 0 
- 0 . 0 5 9 
- 0 . 0 3 3 

- 0 . 0 1 5 5 
- 0 . 0 0 6 7 
- 0 . 0 0 3 5 
- 0 . 0 0 2 2 

tives yield hypergeometric polynomials which can be 
transformed into those already appearing in the disk-
disk interaction, and the resulting formula is no more 
difficult for calculation than the disk-disk interaction 
formula. Including terms in d2E/dk2, 

Ec(cyl-cyl) = 47rV2i?1
3 - \ k g 2 + \ ( l + * 2 ) l / V 

r g2n+2 ng2n k2 -i 
+ E c2np2n(o)\ 

w=i L2(n+1) 6 m2. 

X(l+k2)~2^F(-ny -n+1, i -k2) 

where a is the disk charge density, <r=pA. The deriva- or including terms in d2E/dk2 and dAE/dk\ 

TABLE II. Self-energy calculations with the (disk-disk) inter
action. All figures have unit charge and the volume of the unit 
sphere. N is the number of slices. Flat-cylinder energies were 
computed with the volume-average radius. The (disk-disk) 
interactions used these same radii. In the (disk-disk) interactions 
the series terms in E(k,g) were computed until two successive 
terms were less than 10~7 or until n = 50 was reached. 

Figure N Ec 

Sphere 

Two equal, touching spheres 

Prolate spheroid of 2:1 axis ratio 

Oblate spheroid of 2:1 axis ratio 

10 0.596335 
20 0.598948 
30 0.599508 
40 0.599715 

20 
40 

0.533921 
0.534999 

10 0.566265 
20 0.572193 
30 0.573545 
40 0.574059 

10 0.575077 
20 0.575612 
30 0.575734 
40 0.575779 

Error 

-0.611% 
-0.175 
-0.082 
-0.047 

-0.288% 
-0.087 

-1.482% 
-0.451 
-0.216 
-0.126 

-0.133% 
-0.041 
-0.019 
-0.011 

E c (cyl-cyl) = 47r
2o-2i?1

3 \-\kg2+h^ + k2)ll2g2 

1 1 k2' 

X 

(i+#W 

[ „2n+2 

2 (n+1 

.16 24g2m2 
+ E C2nP2n(0) 

fnk2 n2(n-\) 
I a 2 n - 2 . 

W4J (n+1) 6 m2 45 

X(l+k2)~2^F(-n, -n+1,1 -k2)\ . 

The procedure can be extended to higher order deriva
tives but we have not found it useful to do so. 

Slice-method calculations with the (cyl-cyl) inter
action are considerably more accurate than those with 
the (disk-disk) interaction. Table I I I lists results for 
the figures used in Table I I . As in Table I I the errors 
vary inversely as the number of interactions but the 
shape-dependent errors of Table I I have been reduced. 

file:///dWto
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DISCUSSION ACKNOWLEDGMENTS 

As now developed, the slice method is accurate enough 
for studies in liquid-drop nuclear fission. This is being 
done and preliminary results will be published shortly. 
With its extension to elliptical disks the method should 
also be useful for further calculations of the equilibrium 
shapes of liquid-drop nuclei with high angular momen
tum6,9 and for the dynamics of close binary stars. 

9 B . C. Carlson and Pao Lu, in Proceedings of the Rutherford 
Jubilee International Conference, Manchester, 1961, edited by 
J. B. Berks (Academic Press Inc., New York, 1961). 

I t is a pleasure to acknowledge the invaluable 
assistance of Joseph N. Vitale who programmed and 
computed, at the Yale Computer Center, all of the 
results of Tables I I and I I I and numerous other 
studies of the slice method mentioned in the text. I 
also thank Lois Frampton for programming the early 
work which appears in Table I. I also thank Professor 
R. L. Gluckstern who assisted in the analysis which 
led to the disk-disk interaction formula. 
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The radial distribution functions g for a classical electron gas computed using the Percus-Yevick (PY) 
equation, convolution hypernetted chain (CHNC) equation, and the Broyles-Sahlin (BS) method, have 
been compared with the Debye-Hiickel (DH) theory. The quantities E^U/Nkt and P^p/nkT have been 
computed from these g's. Computations have been made for values of 9 of 20, 10, 5, 3, and 1; 6 = kTa/q2, 
where a is the ion sphere radius. The PY and BS results show the best agreement, particularly at 0<3. 
The BS method has been of particular value in this study of a long-range potential. In the range of 6 studied, 
g never exceeds one, that is, there is no oscillatory behavior of g. 

I. INTRODUCTION 

IN a classical one-component fluid having an average 
number density n=N/V, where N is the number of 

particles and V the volume, the average number 
density n(r) about a given particle is, in general, not 
constant. The radial distribution function g(r) is the 
factor by which n{r) differs from n and is defined by 
n(r) = ng(r). As a result of the Maxwell-Boltzmann 
classical distribution law, g(r) may be written, in the 
limit as N approaches infinity, as1 

g(r)=V2Z-1 / • • • / e-ulhTdrr -drN, 

V 
(1) 

Z = / ••• e-ulkTdrv-drN, 

V 

where U is the potential energy. In the following, U 
will be assumed to be the sum of pair potentials <£(r). 

The radial distribution function is important because 
thermodynamic quantities can be calculated once g(r) 
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1 Terrell L. Hill, Introduction to Statistical Thermodynamics 
(Addison-Wesley Publishing Company, Inc., Reading, Massa
chusetts, 1960). 

and <j>(r) are known. Of particular interest here are the 
relations for the pressure and mean potential energy,1 

£ = U/NkT= 2rn(kT)-1 j <t>{r)g{r)rHr, (2) 

P~p/nkT= \-2irn{ZkT)-1 / r*g(r) dr. 
Jo dr 

(3) 

U/N, the mean potential energy per particle, is often 
referred to as the correlation energy. 

A direct evaluation of Eq. (1) to determine g is not 
practical and, consequently, several approximate 
methods have been developed; there are four methods 
which are of interest here. Using a collective coordinate 
technique Percus and Yevick2 formed an integral equa
tion (PY) for g. A second integral equation was ob
tained by a summation procedure of Mayer-type 
diagrams and has been given the name convolution 
hypernetted chain equation (CHNC).3 A third method, 

2 J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958); 
J. K. Percus, Phys. Rev. Letters 8, 462 (1962); J. L. Lebowitz 
and J. K. Percus, J. Math. Phys. 4, 116 (1963). 

3 E. Meeron, J. Math. Phys. 1, 192 (1960); T. Morita, Progr. 
Theoret. Phys. (Kyoto) 23, 385 (1960); J. M. J. Van Leeuwen, 
J. Groeneveld, and J. DeBoer, Physica 25, 792 (1959); M. S. 
Green, Tech. Rept. Hughes Aircraft Corporation (unpublished). 


